Global Well-posedness for the Non-viscous MHD Equations with Magnetic Diffusion in Critical Besov Spaces

نویسندگان

چکیده

In this paper, we mainly investigate the Cauchy problem of non-viscous MHD equations with magnetic diffusion. We first establish local well-posedness (existence, uniqueness and continuous dependence) initial data (u0, b0) in critical Besov spaces \(B_{p,1}^{{d \over p} + 1} \times B_{p,1}^{{d p}}\) 1 ≤ p ∞, give a lifespan T solution which depends on norm Littlewood—Paley decomposition (profile) data. Then, prove global existence spaces. particular, results also hold Sobolev space \(C\left( {[0,\infty } \right);{H^s}\left. {\left( {{\mathbb{S}^2}} \right)} \right) \left( {C\left( \right);{H^{s - 1}}\left. \cap {L^2}\left( {{\mathbb{S}^2}}\right)} \right)\) s> 2, when satisfies \(\int_{{\mathbb{S}^2}} {{b_0}dx} = 0\) \({\left\| {{u_0}} \right\|_{B_{\infty ,1}^1\left( \right)}} {\left\| {{b_0}} ,1}^0\left( \le \epsilon\). It’s worth noting that our imply some large low regularity for existence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces

In this paper we study the model of heat transfer in a porous medium with a critical diffusion. We obtain global existence and uniqueness of solutions to the equations of heat transfer of incompressible fluid in Besov spaces Ḃ 3/p p,1 (R ) with 1 ≤ p ≤ ∞ by the method of modulus of continuity and Fourier localization technique. AMS Subject Classification 2000: 76S05, 76D03

متن کامل

Global well-posedness of the critical Burgers equation in critical Besov spaces

We make use of the method of modulus of continuity [7] and Fourier localization technique [1] to prove the global well-posedness of the critical Burgers equation ∂tu + u∂xu + Λu = 0 in critical Besov spaces Ḃ 1 p p,1(R) with p ∈ [1,∞), where Λ = √ −△. 2000 Mathematics Subject Classification: 35K55, 35Q53

متن کامل

Well-posedness in critical spaces for barotropic viscous fluids

This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N ≥ 2. We address the question of well-posedness for large data having critical Besov regularity. Our result improve the analysis of R. Danchin in [13], by the fact that we choose initial density more general in B N p p,1 with 1 ≤ p < +∞. Our result relies on a new a priori estimate for the velocity, whe...

متن کامل

Well-posedness for the viscous shallow water equations in critical spaces

We investigate the well-posedness for the 2D viscous shallow water equations in the theory of compressible fluid. Making use of the Fourier frequency localization and Bony paraproduct decomposition, closing to a stable equilibrium h0, we obtain the local well-posedness for general initial data u0 and the global well-posedness for small initial data u0 in certain scaling invariant Besov spaces, ...

متن کامل

On well-posedness of the Cauchy problem for MHD system in Besov spaces

This paper studies the global well-posedness of solutions to the Cauchy problem of incompressible magneto-hydrodynamics system for large initial data in homogeneous Besov space Ḃ 2 p −1 p,r (R) for 2 < p < ∞ and 1 ≤ r < ∞. In the case of spatial dimension n ≥ 3 we establish the global well-posedness of solution for small data and the local one for large data in Besov space Ḃ n p −1 p,r (R), 1 ≤...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Sinica

سال: 2022

ISSN: ['1439-7617', '1439-8516']

DOI: https://doi.org/10.1007/s10114-022-1400-3